Detecting driver distraction
نویسندگان
چکیده
The increasing use of in-vehicle information systems (IVISs), such as navigation devices and MP3 players, can jeopardize safety by introducing distraction into driving. One way to address this problem is to develop distraction mitigation systems, which adapt IVIS functions according to driver state. In such a system, correctly identifying driver distraction is critical, which is the focus of this dissertation. Visual and cognitive distractions are two major types of distraction that interfere with driving most compared with other types. Visual and cognitive distraction can occur individually or in combination. The research gaps in detecting driver distraction are that the interactions of visual and cognitive distractions have not been well studied and that no accurate algorithm/strategy has been developed to detect visual, cognitive, or combined distraction. To bridge these gaps, the dissertation fulfilled three specific aims. The first aim demonstrated the layered algorithm developed based on data mining methods could improve the detection of cognitive distraction from my previous studies. The second aim developed estimation algorithms for visual distraction and demonstrated a strong relationship of the estimated distraction with the increased risk of real crashes using the naturalistic data. The third objective examined the interaction of visual and cognitive distractions and developed an effective strategy to identify combined distraction. Together these aims suggest that driver distraction can be detected from performance indicators using appropriate quantitative methods. Data mining techniques represent a promising category of methods to construct such detection algorithms. When combined in a sequential way, visual distraction dominates the effects of distraction while cognitive distraction reduces the overall impairments of distraction on driver performance. Therefore, it is not necessary to detect cognitive distraction if visual distraction is present.
منابع مشابه
Driver distraction detection and recognition using RGB-D sensor
Driver inattention assessment has become a very active field in intelligent transportation systems. Based on active sensor Kinect and computer vision tools, we have built an efficient module for detecting driver distraction and recognizing the type of distraction. Based on color and depth map data from the Kinect, our system is composed of four sub-modules. We call them eye behavior (detecting ...
متن کاملDriver Cognitive Distraction Detection Using Driving Performance Measures
Driver cognitive distraction is a hazard state, which can easily lead to traffic accidents. This study focuses on detecting the driver cognitive distraction state based on driving performance measures. Characteristic parameters could be directly extracted from Controller Area NetworkCANBus data, without depending on other sensors, which improves real-time and robustness performance. Three cogni...
متن کاملDetecting distraction and degraded driver performance with visual behavior metrics
Driver distraction contributes to approximately 43% of motor-vehicle crashes and 27% of near-crashes. Rapidly developing in-vehicle technology and electronic devices place additional demands on drivers, which might lead to distraction and diminished capacity to perform driving tasks. This situation threatens safe driving. Technology that can detect and mitigate distraction by alerting drivers c...
متن کاملVision-based method for detecting driver drowsiness and distraction in driver monitoring system
Jaihie Kim Yonsei University School of Electrical and Electronic Engineering 134 Sinchon-dong, Seodaemun-gu Seoul, Seoul 120-749, Republic of Korea E-mail: [email protected] Abstract. Most driver-monitoring systems have attempted to detect either driver drowsiness or distraction, although both factors should be considered for accident prevention. Therefore, we propose a new drivermonitoring me...
متن کاملComparing Support Vector Machines (SVMs) and Bayesian Networks (BNs) in detecting driver cognitive distraction using eye movements
Driver distraction is an important and growing safety concern as information technologies, such as navigation systems and internet-content services, have become increasingly common in vehicles. To allow people to benefit from these technologies without compromising safety, an adaptive In-Vehicle Information System (IVIS) is needed. Such systems can manage drivers workload and mitigate distracti...
متن کامل